更多>>精华博文推荐
更多>>人气最旺专家

朱一涛

领域:腾讯

介绍:离开学校到司,初到一个新的陌生的环境,要入乡随俗,懂得灵活变通,先求生存后谋发展。...

立花慎之介

领域:大河网

介绍:基于以上实验研究,得到钢结构防护用聚脲涂层耐海洋大气环境腐蚀性能的变化规律及其影响因素,为工程应用提供基础数据和理论支持。w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际

利来国际家居集团
本站新公告w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际
kg3 | 2019-01-17 | 阅读(64) | 评论(801)
据表可知( )高频考点层级突破考点二 人口增长模式及其转变国家2000~2010年人口年均增长率(%)2009年人口密度(人/平方千米)2010年0~14岁人口比重(%)2009年出生时预期寿命(岁)男性女性中国印度法国美国《地理必修2》内容结构人口人的生活空间人的生产活动人口的变化城市与城市化农业地域的形成与发展工业地域的形成与发展交通运输布局及其影响人类与地理环境的协调发展第一章人口的数量变化第一节人口的数量变化和人口的合理容量高三一轮总复习1.不同人口增长模式的主要特点及地区分布。【阅读全文】
w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际
rne | 2019-01-17 | 阅读(530) | 评论(888)
”——孙中山在《民报》创刊周年大会的演说“欧美为甚不能解决社会问题?因为没有解决土地问题。【阅读全文】
qse | 2019-01-17 | 阅读(405) | 评论(591)
二是纵向内部结构,中、下部位为高孔高渗段,易水淹;而上部成为剩余油富集部位【3l。【阅读全文】
2bc | 2019-01-17 | 阅读(183) | 评论(354)
最后,不是为了逃脱“侵权”责任,而是让大家理解网站并认同网站(我们已经建立了快速有效的侵权处理机制和事务中心)。【阅读全文】
lhu | 2019-01-17 | 阅读(413) | 评论(764)
如果国家和集体控股,则具有明显的公有性,可增强公有制经济的活力,扩大公有制资本的支配范围,增强公有制的主体作用。【阅读全文】
3wt | 2019-01-16 | 阅读(602) | 评论(686)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
jz1 | 2019-01-16 | 阅读(494) | 评论(423)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
efc | 2019-01-16 | 阅读(306) | 评论(816)
▲被俄罗斯扣留的其中一艘乌克兰小型装甲舰和一艘拖船,停泊在克里米亚刻赤港。【阅读全文】
w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际,w66.cm利来国际
sjb | 2019-01-16 | 阅读(633) | 评论(961)
安全狗多次出现在在国家级重大会议的网络安全保障工作中,为多次大型国家级甚至是国际会议保驾护航,如G20、厦门金砖会晤、十九大、青岛上合峰会……在历次重大活动的网络安保工作中,安全狗的云安全产品经受住了实战考验,守护住了相关单位信息系统的网络安全防线。【阅读全文】
mda | 2019-01-15 | 阅读(186) | 评论(510)
()(3)有市场存在就可以称作市场经济。【阅读全文】
nja | 2019-01-15 | 阅读(687) | 评论(403)
造纸工业已成为国民经济发展中为数不多的产品供不应求且市场潜力巨大的产业,加快造纸工业的发展,对林业、农业、包装、印刷、化工、机械和交通等行业具有明显的带动作用,可培育成国民经济新的增长点。【阅读全文】
0iz | 2019-01-15 | 阅读(672) | 评论(272)
2.环境承载力与人口合理容量的区别。【阅读全文】
e1e | 2019-01-15 | 阅读(332) | 评论(34)
该剧由著名导演张多福执导,黄海冰、郭广平等主演,展现了上世纪20年代中国共产党创建人民军队的过程,串联起北伐战争、南昌起义、秋收起义、广州起义及井冈山会师、古田会议等历史事件。【阅读全文】
1ov | 2019-01-14 | 阅读(120) | 评论(191)
三、工作要求各工程指挥部和铁路公司要按照“五定、三统一、一查处”的检查制度认真开展“十严禁”检查处理工作。【阅读全文】
z9t | 2019-01-14 | 阅读(821) | 评论(213)
工程质量监督管理局汇总后报建设部。【阅读全文】
共5页

友情链接,当前时间:2019-01-17

利来娱乐国际 w66利来国际手机app 利来,利来娱乐 利来国际旗舰厅 利来国际公司
利来国际是多少 利来国际app w66利来guoji 利来国际www.w66com 利来娱乐国际ag旗舰厅
利来娱乐城 利来网上娱乐 w66利来娱乐 利来国际w66客服 利来国际娱乐
利来国际最老牌 利来国际 利来娱乐网址 利来国际老牌博彩手机 w66历来国际
福鼎市| 林周县| 赤城县| 古田县| 福安市| 台中市| 潢川县| 吉安县| 佳木斯市| 绥中县| 沧源| 班戈县| 益阳市| 漳州市| 喀喇沁旗| 天等县| 金山区| 岑巩县| 区。| 屯留县| 横峰县| 安龙县| 保康县| 韶山市| 靖西县| 金乡县| 云梦县| 台东县| 聊城市| 绍兴市| 德钦县| 灵丘县| 屏边| 酉阳| 临邑县| 淮滨县| 汉沽区| 河北区| 剑河县| 洛扎县| 景德镇市| http://m.56109400.cn http://m.55296618.cn http://m.67822849.cn http://m.88660212.cn http://m.00513658.cn http://m.17980122.cn